HOTCAKE: Higher Order TuCker Articulated KErnels for Deeper CNN Compression

Rui LIN

Nov 2020 Department of Electrical and Electronic Engineering

The University of Hong Kong

Rui LIN (HKU)

OUTLINE

Tensor Basic

B HOTCAKE

- Input Channel Decomposition
- Tucker Rank Selection
- Higher-Order Tucker Compression
- Fine-Tuning

4 Experimental Results

- SimpNet
- MTCNN
- AlexNet

Introduction

Introduction

Problem: Deep neural networks are over-parameterized

Large and complicated deep neural networks (DNNs), especially convolutional neural networks (CNNs), can work well on the evergrowing datasets nowadays, but the **over-parameterization problem** unarguably impedes the deployment of sophisticated DNN/CNNs on **resource-limited** edge devices.

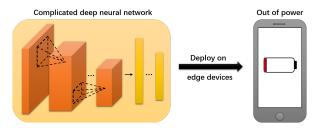


Figure 1: Over-parameterization hinders the deployment of modern DNNs on edge devices constrained by limited resources.

Three mainstream DNN/CNN compression techniques:

- Pruning It trims a dense network into a sparser one either by zeroing the small-weight connections or by removing entire filters and/or even layers.
- Quantization It limits network weights and activations to be in low bit-widths for smaller storage and cheaper computation.
- Low-rank Decomposition It decomposes the kernel tensors into low-rank factors with smaller sizes for compression.

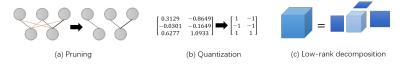


Figure 2: Three mainstream DNN compression techniques.

Rui LIN (HKU)

Tensor Basic

Tensors are **multi-way** arrays that generalize vectors (viz. one-way tensors) and matrices (viz. two-way tensors) to their higher order counterparts. Figure 2 shows the so-called **tensor network diagram** for these data structures where an open edge stands for an index axis.

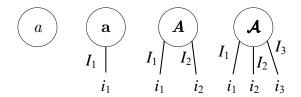


Figure 3: Graphical representation of a scalar a, vector a, matrix A, and third-order tensor A.

Tensor Basic: Tucker-2 Decomposition

Definition Tucker decomposition represents a *d*-way tensor $\mathcal{A} \in \mathbb{R}^{I_1 \times \cdots \times I_d}$ as the full multilinear product of a core tensor $\mathcal{G} \in \mathbb{R}^{R_1 \times \cdots \times R_d}$ and a set of factor matrices $\mathbf{U}^{(k)} = [u_1^{(k)}, \cdots, u_{R_k}^{(k)}]$ for $k = 1, 2, \cdots, d$,

$$\mathcal{A} = \sum_{r_1=1}^{R_1} \cdots \sum_{r_d=1}^{R_d} \mathcal{G}(r_1, \cdots, r_d) (u_{r_1}^{(1)} \circ \cdots \circ u_{r_d}^{(d)})$$
$$= \mathcal{G} \times_1 \mathbf{U}^{(1)} \times_2 \mathbf{U}^{(2)} \cdots \times_d \mathbf{U}^{(d)},$$

where r_1, r_2, \dots, r_d are auxiliary indices that are summed over, and \circ denotes the outer product. The dimensions (R_1, R_2, \dots, R_d) are called the Tucker ranks.

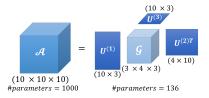


Figure 4: Tucker decomposition on a 3-way tensor can reduce the number of parameters significantly.

Rui LIN (HKU)	
---------------	--

HOTCAKE

Regular Convolution

Figure 5 illustrates through tensor network diagram how convolution is done via a particular kernel (filter) producing the k_2 th slice in the output tensor (a.k.a. feature map). The convolution operation is denoted by the symbol \circledast .

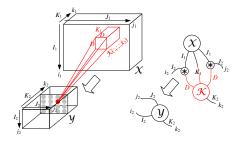


Figure 5: Convolution with the input tensor and the kernels.

Rui	I IN -	(HKU)
i tui		(''''``O)

Tucker-2 Decomposition and 3-stage Convolution

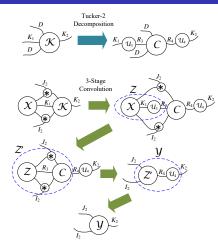


Figure 6: (Upper) Tucker-2 decomposition of kernel tensor and (Lower) the three successive, smaller size convolutions marked by blue dashed circles. Some obvious dimensions are omitted in the figure for brevity.

Tucker-2 adopts a 4-way view of the convolutional kernel tensor. HOT-CAKE is along the line of tensor decomposition and recognizes the unexploited rooms for deeper compression by *going beyond 4-way*.

	Tucker-2	HOTCAKE
Data dimension	4-way	beyond 4-way
Rank selection	VBMF ¹	extended VBMF
Decomposition algorithm	HOSVD ²	HOSVD with rSVD ³

Table 1: Comparison between Tucker-2 and HOTCAKE.

¹ Variational Bayesian Matrix Factorization

² Higher Order Singular Value Decomposition

³ Random Singular Value Decomposition

HOTCAKE: Input Channel Decomposition

Example 1 Suppose a convolution layer of kernel tensor $\mathcal{K} \in \mathbb{R}^{3 \times 3 \times 128 \times 256}$ In this case, the number of input channels is $K_1 = 128$, which can be decomposed into several branches of dimensions K_{1i} 's with $K_1 = \prod_i K_{1i}$, such as $K_{12} = 16$ and $K_{11} = 8$. These K_{1i} 's can be determined according to the estimated number of clusters of filters. Empirically, it is found that it works best when $K_{1j} \ge K_{1i}$, $\forall j \ge i$.

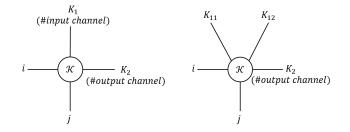


Figure 7: Input channel decomposition.

Rui LIN (HKU)

HOTCAKE: Tucker Rank Selection

Example 2 Given a kernel tensor $\mathcal{K} \in \mathbb{R}^{3 \times 3 \times 128 \times 256}$, suppose the input channel decomposition makes it a $\mathcal{K}_{new} \in \mathbb{R}^{3 \times 3 \times 8 \times 16 \times 256}$ by decomposing its #inputs axis into 2 branches. Assuming selected VBMF ranks of \mathcal{K}_{new} being $(R_{31}, R_{32}, R_4) = (5, 7, 107)$ and a search diameter of 3, the rank search space in our algorithm is then $\{(R_{31}, R_{32}, R_4) | [4, 5, 6] \times [6, 7, 8] \times [106, 107, 108]\}$, containing 27 different combinations.

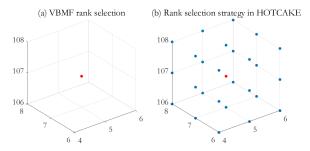


Figure 8: Tucker rank selection strategy in HOTCAKE.

Rui LIN (HKU)

HOTCAKE

Here, we employ truncated higher-order singular value decomposition (HOSVD) with rSVD in place of SVD to avoid the $\mathcal{O}(n^3)$ computational complexity.

Procedure 1 Modified truncated higher-order singular value decomposition (HOSVD)

Require: Tensor $\mathcal{K}_{new} \in \mathbb{R}^{l_1 \times \ldots \times I_d}$, ranks: R_1, \ldots, R_d . **Ensure:** Core tensor $\mathcal{G} \in \mathbb{R}^{R_1 \times \ldots \times R_d}$, factor matrices $U^{(1)}, \ldots, U^{(d)}$, where $U^{(k)} \in \mathbb{R}^{l_k \times R_k}$ for $k = 1, \ldots, d$. for $n = 1, 2, \ldots, d$ do $[L, \Sigma, R^T] \leftarrow rSVD$ decomposition of $K_{new(n)}$ $U^{(n)} \leftarrow R_n$ leading left columns of Lend for $\mathcal{G} \leftarrow [[\mathcal{K}_{new}; U^{(1)T}, \ldots, U^{(d)T}]]$

	Original	HOTCAKE
# Parameters Time Complexity	$\mathcal{O}(D^2K_1K_2) \ \mathcal{O}(M^2D^2K_1K_2)$	$\mathcal{O}(D^2 R_{3i}^l + l R_{3i} K_{1i} + K_4 R_4) \ \mathcal{O}(M^2 (D^2 R_{3i}^l + l R_{3i} K_{1i} + K_4 R_4))$

 Table 2: Number of parameters and the time complexity of the CONV layer

 before and after Higher-order Tucker Compression.

In Table 2, R_{3i} and K_{1i} are the largest values in $R_{31}, R_{32}, \ldots, R_{3l}$ and $K_{11}, K_{12}, \ldots, K_{1l}$, respectively. The capital *M* is the output feature height or width value. It is worth noting that a huge computational complexity reduction can be achieved through HOTCAKE.

Experimental Results

SimpNet is a lightweight CNN, Table 3 shows the overall result. We notice that Tucker-2 and HOTCAKE achieve **similar classification ac-curacy** after fine-tuning, while HOTCAKE produces a **more compact** model.

	Original	Tucker-2	HOTCAKE
Testing Accuracy	95.21%	90.84%	90.95%
Overall Parameters	5.48 <i>M</i>	2.24 <i>M</i>	1.75 <i>M</i>
Compression Ratio	-	2.45×	3.13×

Table 3: An overview of SimpNet's performance and the number of parameters before and after compression.

Experimental Results: SimpNet

- Figure 9 shows the classification accuracy of the compressed model obtained by employing HOTCAKE when increasing the number of compressed layers.
- The sequence we compress the layer is determined by their compression ratios listed in Table 4.
- Employing this strategy, we can achieve the highest classification accuracy when the overall model compression ratio is given.

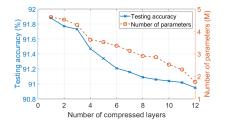


Figure 9: Classification accuracy and model parameters vs. the number of compressed CONV layers.

Table 4 shows SimpNet's layer-wise analysis.

CONV layer#	Original	Tucker-2	HOTCAKE
2	76K	$30K(2.53 \times)$	$24K(3.17\times)$
3	147K	$61K(2.41\times)$	$39K(3.77\times)$
4	147K	$61K(2.41\times)$	$43K(3.42\times)$
5	221K	$88K(2.72\times)$	$65K(3.40\times)$
6	332K	$136K(2.44\times)$	$103K(3.22\times)$
7	332K	$137K(2.42\times)$	$92K(3.61 \times)$
8	332K	$137K(2.42\times)$	$104K(3.19\times)$
9	332K	$135K(2.46 \times)$	$112K(2.96 \times)$
10	498K	$206K(2.42\times)$	$162K(3.07\times)$
11	746K	$314K(2.37\times)$	$183K (4.08 \times)$
12	920K	$371K(2.48\times)$	$257K(3.58\times)$
13	1.12M	$569K(1.97 \times)$	$569K(1.97 \times)$

 Table 4: SimpNet's layer-wise analysis. Numbers in brackets are compression

 ratios compared with the original CONV layers.

Experimental Results: MTCNN

MTCNN is designed for human face detection. It contains **three cascaded neural networks** called P-Net, R-Net and O-Net.The first two are too small such that we do not have much space to compress them. Therefore, **we compress only the O-Net**.

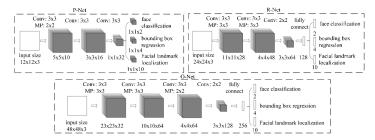


Figure 10: MTCNN is a lightweight network cascaded by P-Net, R-Net and O-Net † .

† Zhang, K., Zhang, Z., Li, Z., & Qiao, Y. (2016). Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Processing Letters, 23(10), 1499-1503.

Table 5 shows the overall model compression results employing HOT-CAKE. We achieved **at least** $3 \times$ compression ratio on all the three CONV layers even though the original layer sizes are **already small enough.**

CONV layer#	Original	HOTCAKE
2	18K	$4K (4.50 \times)$
3	37K	$8K (4.63 \times)$
4	33K	$11K (3.00 \times)$

 Table 5: O-Net's Layer-wise analysis. Numbers in brackets are compression ratios.

Table 6 further illustrates the detailed performance of the compressed model. The performance of the MTCNN compressed by HOTCAKE is **almost the same** as the original one.

	Original	HOTCAKE
Face Classification Accuracy	95.36%	94.42%
Loss of Face Detection	0.648	0.686
Loss of Bounding Box	0.0137	0.0175
Loss of Face Landmarks	0.0107	0.0128
Total loss	0.546	0.569

Table 6: Performances of MTCNN before and after compression.

Rui LIN ((HKU)
-----------	-------

AlexNet is **much larger** than the above two examples. Table 6 shows the layer-wise analysis of AlexNet. We observe that HOTCAKE can achieve **higher** compression ratio for **each** layer.

CONV layer#	Original	Tucker-2	HOTCAKE
2	307K	127K (2.42×)	56K (5.48×)
3	664K	197K (3.37×)	120K (5.53×)
4	885K	124K (7.14×)	51K (17.35×)
5	590K	71K (8.31×)	34K (17.35×)

Table 7: AlexNet's layer-wise analysis. Numbers in brackets are compression ratios compared with the original CONV layers.

Table 8 further shows classification performance of the compressed models. Tucker-2 obtains a higher accuracy when its **compression ratio is half less than HOTCAKE**.

	Original	Tucker-2	HOTCAKE
Testing Accuracy	90.86%	90.29%	83.17%
Overall Parameters (CONV layers)	2.47M	520K	261K
Compression Ratio		$4.75 \times$	$9.37 \times$

 Table 8: An overview of AlexNet's performance and number of parameters before and after compression.

Experimental Results: AlexNet

- To make the comparison fair, we further set ranks manually for Tucker-2 to reach the same compression ratio as HOTCAKE, and its classification accuracy drops from 90.29% to 81.39%, which is lower than that of HOTCAKE (83.17%).
- We assign ranks for both Tucker-2 and HOTCAKE, to reach higher compression ratios at around 12×, 14× and 16×. The results indicates the superiority of HOTCAKE over Tucker-2 in high compression ratios.

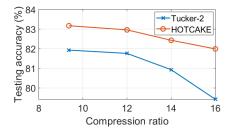


Figure 11: Accuracy vs. compression ratio on CIFAR-10.

Rui LIN (HKU)

Summary

- HOTCAKE can compress not only *bulky* CNNs, but also *compact* and portable network models.
- HOTCAKE reaches *higher* compression ratios with a *graceful de-crease* of accuracy.
- HOTCAKE can be selectively used for *a better trade-off* between accuracy and the number of parameters.
- HOTCAKE is powerful yet flexible to be *jointly* employed with pruning and quantization.

Thanks!

Rui LIN (HKU)